Routine flaring, also known as production flaring, is a method and current practice of disposing of large unwanted amounts of associated petroleum gas (APG) during crude oil extraction. The gas is first separated from the liquids and solids downstream of the wellhead, then released into a flare stack and combustion into Earth's atmosphere (usually in an open diffusion flame). Where performed, the unwanted gas (mostly natural gas dominated by methane) has been deemed unprofitable, and may be referred to as stranded gas, flare gas, or simply as "waste gas". Routine flaring is not to be confused with safety flaring, maintenance flaring, or other flaring practices characterized by shorter durations or smaller volumes of gas disposal.
Over of natural gas is estimated to have been flared worldwide during year 2018. The majority of this was routinely flared APG at thousands of well sites, and is a waste amount equal to the natural gas usage of South and Central America. The largest seven practitioners since 2014 are Russia, Iraq, Iran, the United States, Algeria, Venezuela and Nigeria. Activity in remote regions of Russia is greatest, with political conflict elevating the levels in other countries. The U.S. contributed nearly 10% of the 2018 world total.
Routine flaring, along with intentional gas venting and unintentional fugitive gas emissions, have profound negative consequences. The wasting of a primary resource provides no present economic or future wealth benefits, while creating liabilities through the build up of greenhouse gases and other harmful pollutants in the biosphere. With most forecasts showing oil and gas use increasing into the foreseeable future, the World Bank in 2002 launched the international Global Gas Flaring Reduction Partnership (GGFRP); a public-private partnership with the aim of retiring the wasteful practice. In 2015, it further launched the Zero Routine Flaring by 2030 Initiative; endorsed by 32 countries, 37 companies, and 15 banking institutions by the end of 2019. Endorsers based in the U.S. were the U.S. Federal Government, the State of California, and the World Bank. Global data spanning 1996-2018 indicate that flared gas volumes fell 10%, while oil production rose 40%.
The decision processes leading to wasting of APG in modern times depend greatly upon regional circumstances. Generally, the near-term financial and risk management objectives of decision makers will determine the outcome. Some form of licensing or other regulation of flaring and venting activity exists in most , but details vary widely. Factors that can increase wasting activity include (not an exhaustive list):
The costs to eliminate flaring are better understood and vary widely between instances. The World Bank estimates the total mitigation cost at US$100 billion. If brought to the natural gas market in a developed economy such as that in the United States, the flared gas could supply about 17% of the 30 trillion cubic feet of U.S. consumption, and potentially be valued at nearly US$20 billion. In less developed nations, the benefits could have a further effect. For example, it could supply all current usage throughout South and Central America. If used to generate 750 billion kWh of electricity, it could supply the entire needs of the African continent.
While flaring is wasteful and produces harmful byproducts like other burning of fossil fuels, it is less disruptive in the near term than venting the associated gas which consists primarily of methane. The buildup of atmospheric methane is responsible for about 25% of the changes in climate forcing, despite its nearly 100x lower abundance compared to . According to the International Energy Agency, at least 75 million tons of methane was released by the oil and gas industry through venting and fugitive emissions, and an estimated 4 million tons was released through flaring inefficiencies. The use of fossil fuels by humans is responsible for about 20% of all methane emissions, and those from the oil and gas industry are responsible for about 25% of all anthropogenic sources. These sources are also in need of more extensive tracking and mitigation efforts since natural gas is projected to continue to be the most rapidly growing supply of global primary energy.
Cryptocurrency "miners" have recently identified flare gas as a potential low-cost source for their energy-intensive computing. A number of partnerships have emerged between these two unusually different miners, with the further aim of minimizing each of their substantial .
APG consists primarily of methane along with lesser amounts of ethane, propane, butane, and other alkanes. When a flare is operating effectiveness, the combustion by-products include primarily water and carbon dioxide, and small amounts of carbon monoxide and nOx (NoX). Such flares thus demonstrate high conversion efficiency, with only about 2% of APG escaping on average. When a flare is not operating effectively, more substantial amounts of APG can escape, sometimes as high 40%. Also volatile organic compounds (VOCs), toxic compounds, and other damaging pollutants can be created. VOCs and NoX can act to produce ground-level ozone at levels that exceed air quality standards. The presence of smoke indicates a poorly operating flare, and the resulting short-lived black carbon can accelerate snow and ice melting.
Most other contaminants in the APG stream occur as trace element. They can include toxic elements like mercury and radon that are naturally occurring. Enhanced oil recovery efforts such as hydraulic fracturing may introduce others. The common natural contaminant hydrogen sulfide enables the creation of sulfur dioxide and sulfuric acid in gas flares. At elevated concentrations, it can cause corrosion and other air quality challenges, and result in characterizations such as "sour gas" and "acid flare". As a practical matter, gas streams with higher sulfur contamination levels are more likely to be flared - where allowed - than utilized due to their lower economic value.
Additional satellites and instruments have, and are scheduled to continue to come online with capability to measure methane and other more powerful greenhouse gases with improving resolution. The Tropomi instrument launched in year 2017 by the European Space Agency can measure methane, sulphur dioxide, nitrogen dioxide, carbon monoxide, aerosol, and ozone concentrations in earth's troposphere at resolutions of several kilometres. The CLAIRE satellite launched in year 2016 by the Canadian firm GHGSat can resolve carbon dioxide and methane to as little as , thus enabling its customers to pinpoint the source of emissions.
Researchers for the Environmental Defense Fund have extensively mapped methane emissions from oil and gas operations in the U.S. Permian Basin spanning years 2019–2020. Their results show emissions at least three times larger than those reported by operators and some degree of malfunctioning of more than 10% of flares. About half of the malfunctioning flare stacks were found to be unlit and releasing their gases with no abatement.
From 1996 through 2018, a 10% reduction in global flaring volume (measured in cubic metres - m3) was realized while global oil production rose 40% (right figure). It was accompanied by a 35% reduction in global flaring intensity (measured in cubic metres per barrel oil produced - m3/bbl). This was due especially in part to earlier reduction efforts in GGFR partner countries such as Russia and Nigeria. As of 2018, Canada, Brazil, and several Middle East nations flared at intensities below 1 m3/bbl, compared to the global average of 4.1 m3/bbl. Several African nations continue to flare at over 10 m3/bbl, including Cameroon at over 40 m3/bbl.
Just four nations are responsible for nearly 50% of all gas flared: Russia, Iraq, Iran, and the United States. Their flaring intensities range from about 3 to 10 m3/bbl, and have not improved substantially in the last few years. Each country has extensive infrastructure and access to advanced technologies, but also complex business and political cultures that may be more resistant to change.
However, since about 2005, gas flaring activity has once again been increasing, as shown in the accompanying charts. 32 states host and regulate gas flaring and/or venting. The largest volume changes since about 1990 have been in the Permian Basin of west Texas and New Mexico, the Bakken Formation of North Dakota, and the Eagle Ford Group of southeast Texas.
Gas flaring increased in the United States as measured both by volume and by percentage. In 2018, gas flaring reached nearly 50-year highs, with 500 billion cubic feet of gas flared, which represents 10% of APG being flared. Reports of negative producer prices for natural gas, and of a further doubling of activity in the Permian, drove continued growth in this destructive practice in 2019 in the United States. In 2018–2019, the amount of gas wasted daily in the Permian alone was capable of supplying the residential needs of the entire state of Texas. Five new long-distance gas pipelines from the region are under construction, with the first entering service in Q3 2019, and the others scheduled to come online during 2020–2022.
A loosening of U.S. federal regulations starting in 2017 enabled further increases to the waste of APG from both public and private lands. These are summarized in a June 2019 report from the U.S. Department of Energy, which identifies the most consequential changes as:
|
|